分布积分法是什么?

分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。

它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。

分部积分法四种典型模式简介

一般地,从要求的积分式中将v'da凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。分部积分法最重要之处就在于准确地选取dw,因为一旦dv确定,则公式中右边第二项/vdw中的diu也随之确定。

但为了使式子得到精简,如何选取do则要依du的复杂程度决定,也就是说,选取的dv一定要使du比之前的形式更简单或更有利于求得积分。依照经验,可以得到四种典型的模式。记忆模式口诀:反(函数)对(数函数)幂(函数)指(数函数)三(角函数)。

以上内容参考:百度百科——分部积分法