从大量数据中提取知识的过程通常称为
从大量数据中提取知识的过程通常称为数据挖掘 。
数据挖掘是一个计算机科学术语,读音shù jù wā jué,意思一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘分为有指导的数据挖掘和无指导的数据挖掘。有指导的数据挖掘是利用可用的数据建立一个模型,这个模型是对一个特定属性的描述。无指导的数据挖掘是在所有的属性中寻找某种关系。具体而言,分类、估值和预测属于有指导的数据挖掘;关联规则和聚类属于无指导的数据挖掘。?
数据挖掘简要分为:频繁模式挖掘(Frequent Pattern Mining)、序列挖掘(Sequence Mining)、数据流挖掘(Data Stream Mining)、文本挖掘(Text Mining)、Web挖掘(Web Minging)、图挖掘(Graph Mining)和时空数据挖掘(Temporal-spatial Mining)等,具体地:
数据流挖掘是针对数据流的数据挖掘,数据特点是数据随时间变化快且数据量大。