费马的发现的历史背景

费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。

费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。

费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。

17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。

鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值1631年。

尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。

1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。

费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。

费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论著。如果不是费马长子积极出版费马的数学论著,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。

对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。

费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。

费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。

费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。

17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。

对解析几何的贡献

费马独立于笛卡儿发现了解析几何的基本原理。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。

费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。

《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。

笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。

在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。

对微积分的贡献

16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所***知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。

曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。

费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。

对概率论的贡献

早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。

费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。

费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。

一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。

对数论的贡献

17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。

费马在数论领域中的成果是巨大的,其中主要有:

(1)全部素数可分为4n+1和4n+3两种形式。

(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。

(3)没有一个形如4n+3的素数,能表示为两个平方数之和。

(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。

(5)边长为有理数的直角三角形的面积不可能是一个平方数。

(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。

对光学的贡献

费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。

费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。