关于高等数学中有关高阶微分不具有形式不变性
一阶微分不变性:
dy = f'(u)du = f'(u)g'(x)dx
微分的乘法律
d^2y=d(f'(u)du)
=d(f'(u))du+f'(u)d(du)
=f''(u)(du)^2+f'(u)d^2u
上面就是二阶微分的基本形式,和x没有关系。
如果是y求关于x的二阶导数
即:d^2y/(dx)^2
=f''(u)(du/dx)^2+f'(u)d(du/dx)/dx
如果u=g(x)
原式=f''(u)(g'(x))^2+f'(u)g''(x)
=y''u'^2+y'u''
如果u=g(z),那么du/dx=0
原式=0