岩溶水资源合理开发利用和保护对策

一、矿井水资源化利用及途径

1.矿井水利用现状

矿井排水来源于孔隙水、砂岩裂隙水和灰岩岩溶水,其中岩溶水占75%。岩溶水是焦作市城市供水的重要水源,合理开发利用和保护岩溶水关系到居民供水安全。在全球化水资源越来越紧张的大背景下,将矿井排水进行资源化利用是非常有必要的。焦作矿区年排放矿井水量为1.5亿m3,目前利用量约为3700万m3/a,占整个矿区排水总量的23%,其余被排入周边河流,白白流失。矿井水利用途径主要是:焦作市环境用水量为360万m3/a,煤矿生产用水量为340万m3/a左右,煤矿周边农田灌溉利用量为3000万m3/a。根据焦作市用水规划,2030年需水量为4.72亿m3,供水量仅为0.70亿m3,水资源缺口4.01亿m3。因此,对矿井排水进行资源化利用是解决焦作市不足的便利途径。

焦作矿区产生的矿井水的水质符合含一般悬浮物矿井水的特征。悬浮物SS通常小于400mg/L,COD通常小于70mg/L,毒理学和放射性指标完全符合饮用水要求。从低附加值的矿井水利用角度,矿井水经过初次沉池的沉淀,基本可满足农业灌溉用水要求;从高附加值的矿井水利用角度,矿井水经过“混凝+沉淀+过滤”,完全能够达到工业(主要是电厂)用水的要求;再经过“消毒”等深度处理,处理后的矿井水也可以达到生活饮用水的水质要求。我国矿井水处理已有成熟的技术和经验,焦作矿区排水量大,水量稳定,水质简单易于处理,矿井水的资源化利用是可行的。

2.矿井水资源化利用的途径

目前,国内矿井水资源化的方式主要有:①井下实行清水污水分流,清水经过简单处理后直接利用;②农业灌溉;③矿井水净化处理后利用;④矿井水回灌补源。其中方式①~③应用较为广泛,方式④仅限于特定条件下。

华北石炭-二叠岩溶型煤田煤层底板岩溶水是矿井水的重要来源,发生岩溶水突水或从疏放钻孔、泄水巷流入矿坑的岩溶水,未在采煤巷道或采空区长距离流动并且没有与其他矿井水混合时,其水质保持天然水质,可以直接作为生产和生活用水。煤矿可将直接从含水层中流出并未受污染的地下水,与从采空区或工作面流出的被污染矿井水分开排放,将清水排至地面简单处理后加以利用。

华北石炭-二叠岩溶型煤田各煤矿涌水量都较大,水质较简单,多属于含一般悬浮物的矿井水,悬浮物浓度通常为300mg/L,这为煤矿周边农田灌溉提供了水源条件。焦作矿区在20世纪70~80年代,利用矿井水灌溉农田近10万亩,取得较好的社会效益。

从空间角度,矿井水净化处理工程主要分为两类:地面处理工程和井下处理工程。前者是井下各处产生的矿井水经巷道汇集到矿井的中央水仓,由中央泵房将混合的矿井水提升至地面,在地面建净化站处理,达标后再分别输送到各用水部门使用;后者是在矿井水进入中央水仓前,经过井下净化站处理,达标后进入中央水仓,中央泵房再将清水输送到各用水部门使用。

3.矿井水处理工艺

(1)矿井水的地面处理

目前,对于含一般悬浮物矿井水,地面处理工程的工艺相对成熟单一,基本沿用“混凝—沉淀—过滤—消毒”的流程进行,出水可达到生活饮用水水质要求。常用的构筑物有:调节池、澄清池、无阀重力双层滤池、污泥浓缩池、加氯消毒车间。该工艺关键问题是:

1)混凝药剂的选择与复配,以降低药剂费用,提高出水水质。聚合氯化铝(PAC)+聚丙烯酰胺(PAM-)是常用的药剂组合。PAC适宜处理含浊水质,PAM-分子量大,助凝性能优良,两者组合处理效果远远优于单独使用的效果。

2)集澄清和过滤作用一体的净化器。澄清池集混合絮凝沉淀于一体,减少了构筑物的数量,因而获得广泛的应用;部分厂矿开发的高效矿井水净化设备集澄清池和过滤池于一体的一体化净化器,已普遍用于中小规模矿井水处理厂。

(2)矿井水的井下处理

井下处理工程,形式多样。主要形式亦有两类:一类是在各矿井水涌出口,未经巷道就地建立简易井下处理站,处理后输送到各用水部门。另一类是矿井水在经过巷道进入中心水仓前增加净化处理站,中心水仓变成清水仓,从而解决了定期清理中心水仓的难题,中心泵房再将处理后的清水输送到各用水工作断面。如兖州东滩煤矿开发的“格栅-沉砂-混合-漩流反应及斜管沉淀-混凝-过滤吸附以及污泥压滤”工艺的井下处理工程,徐州权台煤矿则是将中心水仓改造成混凝反应的主要设备,对矿井水进行预处理后,再由中心泵房提升至地面净化站进行二级处理。

4.焦作矿区矿井水处理工艺设计

焦作矿区矿井排水量大,宜采用地面处理工程统一处理,达到相应水质标准后,再输送到各用水部门。焦作矿区矿井水除浊度、悬浮物、大肠杆菌超标外,其余指标均符合饮用水标准,处理工艺相对简单。根据焦作矿区矿井水的水质、水量和处理后的用途,处理工艺可分两段:基础处理工段和深度处理工段。经过基础处理工段的处理,矿井水应能满足工业用水要求;经深度处理工段的处理,矿井水应达到生活饮用水水质要求。

基础处理工段去除的主要污染物包括:悬浮物、有机物和油类。悬浮物主要是煤粉和岩粉,此外还有少量的煤层中的古生物残体、细菌等物。处理工艺流程见图10-13。

图10-13 矿井水基础处理工段工艺流程

深度处理工段去除的污染物主要是菌类和微量有机物,处理工艺流程见图10-14。

图10-14 矿井水深度处理工段工艺流程

根据焦作矿区矿井水的水质水量特征,PAC的工程投加量为10~15mg/L,PAM-的工程投加量为0.2~0.25mg/L。采用“微絮凝-过滤”工艺时,PAC的工程投加量改为5~7mg/L。2006年11月,取演马矿矿井水,投加工业试剂聚合氯化铝(PAC)15mg/L与聚丙烯酰胺(PAM-)0.2mg/L,采用实验室模拟工程设计工艺:“混凝-砂滤-活性炭过滤”,各工段处理效果见表10-12。

表10-12 实验室模拟工艺处理演马矿矿井水效果

二、加强煤矿水害综合防治,减少矿井水的排放

1.岩溶水突水是煤矿安全生产的隐患

焦作矿区受水威胁煤矿资源储量约60132.6万t,目前仅解放储量4685.0万t,尚有92.2%约55447.6万t的储量等待解放(表10-13)。特别是石炭系太原组一5煤(储量9462万t)和一2煤(储量27909万t),因受煤层底板高承压岩溶水的严重威胁,不能正常开采。矿井排水不仅造成大量水资源被浪费,而且企业每年要付出大量的排水费,2003年焦作煤业集团公司***有的8对生产矿井(表10-14),总排水量达282m3/min,总排水费用高达8000万元,吨煤排水电费高达20~30元。

表10-13 焦作矿区受岩溶承压水威胁的储量及被解放的储量 单位:万t

表10-14 焦作矿区2003年生产矿井排水经济技术指标统计表

2.岩溶承压水突水危险性评价

焦作矿区石炭二叠系***含煤11~14层,总厚9~14m,其中可采煤层三层,包括二叠系山西组二1煤(大煤)、石炭系太原组一5煤(二煤)和石炭系太原组一2煤(三煤)。二1煤为稳定煤层,全区可采,一般厚6m,是各矿主采煤层。一5煤距二1煤6~80m,一般厚1~1.5m,矿区西部普遍可采,东部夹1~2层矸,部分可采。一2煤距二1煤85~105m,一般厚度1.5~2.0m,普遍可采。石炭系太原组一5煤和一2煤统称下组煤,煤层底板距二灰和奥灰强含水层近,开采下组煤受煤层底板岩溶承压水的突水威胁,矿区内仅马村矿、中马村矿和朱村矿开采一5煤,而一2煤没有开采。

“特殊水量脆弱性”的矿坑突水在九里山泉域表现得非常突出,其原因主要有以下几点:

1)最下层煤(三煤)距奥陶系岩溶含水层的厚度薄,一般为10~20m(图10-15)。

2)煤系地层中发育数层碳酸盐岩夹层,且直接分布在每层顶板,特别以“二灰”和“八灰”最为典型(图10-15),这些夹层式碳酸盐岩含水层水不仅是矿坑突水的补给源,而且由于其发育稳定、分布广,往往又成为沟通下伏奥陶系含水层的导水层。

3)矿区位于太行山前且由东线向北东的转折部位,东西及北东向构造断裂交错发育,特别是一些大型断裂构造成为岩溶地下水径流的良好通道,同时巨大的断距使得下伏岩溶含水层与煤层及其煤系地层中碳酸盐岩夹层对接,为岩溶水向矿井涌水提供了条件。

4)煤层总体由北向南东倾斜,多位于区域岩溶水位以下,南部地区煤层的岩溶水带压水头在数百米以上,高压状态下的底鼓突水成为巨大隐患。

煤层底板承压水突水危险评价方法有:斯列萨列夫公式法、突水系数法、多源地学信息复合叠加法、脆弱性指数法、五图双系数法等。突水系数法因公式简单,便于应用,自20世纪60年代提出以来,至今一直是煤矿评价和预测底板突水的重要方法。突水系数是指煤层底板单位厚度隔水层所能够承受的静水压力,表达式为

中国北方岩溶地下水环境问题与保护

图10-15 焦作矿区地层柱状图

式中:T为突水系数(MPa/m);P为底板隔水层承受的水压(MPa);M为底板隔水层厚度(m)。

一般来说,突水系数越大,底板突水危险性越高。临界突水系数是指单位隔水层厚度所能承受的最大水压或极限水压。当突水系数超过临界突水系数时,底板具有突水危险;当突水系数小于临界突水系数时,底板基本无突水危险。临界突水系数受矿区水文地质条件、矿井充水条件、开采条件和开采方法等因素的影响,不同矿区或同一矿区的不同矿井往往有不同的临界突水系数值。因此,很多矿区或矿井通过对历史实际突水资料的总结,建立了适用于本矿区的临界突水系数值(表10-15)。就全国实际资料看,受构造破坏块段临界突水系数为0.06MPa/m,正常构造块段临界突水系数为0.1MPa/m。

表10-15 我国一些矿区临界突水系数值

焦作矿区主要生产矿井当前采掘深度二1煤底板八灰岩溶水突水系数值见表10-16,各矿突水系数均超过临界突水系数,各矿在带压开采二1煤时,八灰水突水危险很大。

表10-16 焦作矿区二1煤底板八灰突水系数

一5煤底板直接充水含水层是二灰(L2),一5煤和二灰间的隔水层厚度20m,一2煤底板直接充水含水层为奥灰,隔水层厚度10~20m。二灰和奥灰水力联系密切,二者水位相同,可以视为一个含水层组。奥灰水位按当前75m、一5煤隔水层厚度按20m、一2煤隔水层厚度按10m,根据各井田煤层赋存最大标高,求得一5煤和一2煤的最小突水系数,如表10-17所示。由此可见,开采一5煤和一2煤,底板二灰和奥水突水危险很大。

表10-17 焦作矿区各井田太原组最低突水系数

下面将采用突水系数对矿区“二煤(一5煤)”岩溶突水的风险性进行初步评价。评价中按照突水系数大小分为以下Ⅳ级:

Ⅰ级,无岩溶水突水危害区,“二煤(一5煤)”处于岩溶地下水位以上,不存在下伏岩溶含水层突水的风险。

Ⅱ级,岩溶水轻度突水危害区,下组煤处于岩溶地下水位以下,突水系数介于0~0.06MPa/m之间的地区。

Ⅲ级,岩溶水中等突水危害区,突水系数介于0.06~0.1MPa/m之间的地区,这类区的突水系数已接近煤炭部制定的《矿井水文地质规程》中的突水危险区的临界值0.6。

Ⅳ级,岩溶水严重突水危害区,值突水系数>0.1MPa/m地区。

根据以上计算标准,得到泉域下组煤岩溶突水的风险性评价结果见图10-16。

从图10-16中可以看出,从北西向南东煤矿岩溶水突水的风险性增加,与地层埋深、岩溶地下水流向相一致。Ⅰ级、Ⅱ级区主要分布在系统西北部山区和朱村断层及凤凰山底层以北地区;Ⅲ级区呈条带平行分布在李庄断层与九里山断层的煤系地层翘起段;Ⅳ级区分布在岩溶水系统的东南部。

系统内各区的分布面积分别为:

无岩溶水突水危害区(Ⅰ级)面积90km2。

岩溶水轻度突水危害区(Ⅱ级)面积23km2。

岩溶水中等突水危害区(Ⅲ级)面积18km2。

岩溶水严重突水危害区(Ⅳ级)面积326km2。

3.矿区水害防治的建议

1)Ⅱ级、Ⅲ级、Ⅳ级区不宜开采“三煤”。

2)沿区域性断层留一定厚度的保安煤柱,厚度不小于300m。这些断层包括凤凰山断层、九里山断层、方庄断层、马坊断层、峪河断层等,沿一般断层保安煤柱厚度不小于50m。

3)在Ⅲ级、Ⅳ级区采煤,对开采过程中可能出现的未探明断层、岩溶陷落柱等应引起足够重视,执行“有疑必探、先探后掘”的原则,防止突水事故的发生。

4)在Ⅲ级、Ⅳ级区采煤,在充分查明矿区水文地质条件基础上,针对下伏岩溶水突水问题,可因地制宜地采用煤矿石炭系灰岩隐伏露头注浆截流工程,对突水点的地面钻孔注浆封堵突水点工程,矿井分翼(区)隔离技术和强排技术应用、疏水降压工程与煤层底板含水层注浆改造,工作面煤层底板注浆加固和含水层改造技术等。

三、减少固体废弃物堆存与利用

煤矸石的利用途径主要有三种。一是用煤矸石生产无煤烧结砖。具体做法是,采用成熟的制砖技术,将煤矸石粉碎后添加20%的粉煤灰,利用原煤矸石中的黏土矿物和残余的发热量,烧结成煤矸石砖。焦作现已建成5座煤矸石砖厂,有14条隧道窑生产线。2005年生产煤矸砖1.2亿块,实现了销售收入1437万元,年消耗煤矸石30万t。二是用煤矸石发电。现已建成四座煤矸石发电厂,综合利用电站锅炉8台,总装机容量194MW。2005年矸石发电12.5亿kW·h,实现销售收入2.5亿元,年消耗煤炭洗选加工所产生的煤矸石70余万t。三是用煤矸石充填塌陷区,每年消耗煤矸石1万t以上。煤矸石堆放场

图10-16 九里山泉域下组煤煤矿岩溶水系突水风险性评价分区图

四周应修建集水沟和沉淀池,用于收集矸石山坡面的雨水,沉淀后的雨水用于运矸道路和矸石山的洒水降尘,改善矿区地面环境。对煤矸石堆要采取覆土防渗处理,并种植树木或花草。